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NumericExtensions.jl is a Julia package that provides high performance support of numerical computation. This
package is an extension of the Julia Base – part of the material may be migrated into the Base in future.

NumericExtensions.jl provides a wide range of tools, which include:

• higher order functions for mapping, reduction, and map-reduce operation that takes typed functors to achieve
performance comparable to hand-crafted loops.

• Functions that allow inplace updating and writing results to pre-allocated arrays for mapping, reduction, and
map-reduce operations.

• Convenient functions for inplace vectorized computation.

• Vector broadcasting.

• Fast views for operating on contiguous blocks/slices.

Contents:

Contents 1
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2 Contents



CHAPTER 1

Package Overview

Julia provides a fantastic technical computing environment that allows you to write codes that are both performant
and generic. However, as it is still at its early stage, some functions are not as performant as they can be and writing
computational algorithms directly based on builtin functions may not give you the best performance. This package
provides you with a variety of tools to address such issues.

1.1 Motivating example

To see how this package may help you, let’s first consider a simple example, that is, to compute the sum of squared
difference between two vectors. This can be easily done in Julia in one line as follows

r = sum(abs2(x - y))

Whereas this is simple, this expression involves some unnecessary operations that would lead to suboptimal perfor-
mance: (1) it creates two temporary arrays respectively to store x - y and abs(x - y), (2) it completes the
computation through three passes over the data – computing x - y, computing abs2(x - y), and finally com-
puting the sum. Julia provides a mapreduce function which allows you to complete the operation in a single pass
without creating any temporaries:

r = mapreduce((x, y) -> abs2(x - y), +, x, y)

However, if you really run this you may probably find that this is even slower. The culprit here is that the anonymous
function (x, y) -> abs2(x - y) is not lined, which will be resolved and called at each iteration. Therefore, to
compute this efficiently, one has to write loops as below

s = 0.
for i = 1 : length(x)

s += abs2(x[i] - y[i])
end

This is not too bad though, until you have more complex needs, e.g. computing this along each row/column of the
matrix. Then writing the loops can become more involved, and it is more tricky to implement it in a cache-friendly
way.

With this package, we can compute this efficiently without writing loops, as

r = mapdiff_reduce(Abs2(), Add(), x, y)

# or more concise:
r = sum_fdiff(Abs2(), x, y)

3
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# to compute this along a specific dimension
r = sum_fdiff(Abs2(), x, y, dim)

Here, Abs2 and Add are typed functors provided by this package, which, unlike normal functions, can still be properly
inlined with passed into a higher order function (thus causing zero overhead). This package extends map, reduce,
and mapreduce to accept typed functors and as well introduces additional high order functions like mapdiff,
mapdiff_reduce, sum_fdiff etc to simplify the usage in common cases.

Benchmark shows that writing in this way is over 8x faster than sum(abs2(x - y)).

This package also provides a collection of specific functions to directly support very common computation. For this
particular example, you can write sqdiffsum(x, y), where sqdiffsum is one of such functions provided here.

1.2 Main features

Main features of this package are highlighted below:

• Pre-defined functors that cover most typical mathematical computation;

• A easy way for user to define customized functors;

• Extended/specialized methods for map, map!, reduce, and mapreduce. These methods are carefully opti-
mized, which often result in 2x - 10x speed up;

• Additional functions such as map1!, reduce!, and mapreduce! that allow inplace updating or writing
results to preallocated arrays;

• Vector broadcasting computation (supporting both inplace updating and writing results to new arrays).

• Fast shared-memory views of arrays.

Since many of the methods are extensions of base functions. Simply adding a statement using
NumericExtensions is often enough for substantial performance improvement. Consider the following code
snippet:

using NumericExtensions

x = rand(1000, 1000)
r = sum(x, 2)

Here, when adding the statement using NumericExtensions transparently replace the method provided in the
Base module by the specialized method in NumericExtensions. As a consequence, the statement r = sum(x, 2)
becomes 6x faster. Using additional functions provided by this package can further improve the performance.

4 Chapter 1. Package Overview



CHAPTER 2

Functors

Passing functions as arguments are essential in writing generic algorithms. However, function arguments do not get
inlined in Julia (at current version), usually resulting in suboptimal performance.

2.1 Motivating example

Passing functions as arguments are essential in writing generic algorithms. However, function arguments do not get
inlined in Julia (at current version), usually resulting in suboptimal performance. Consider the following example:

plus(x, y) = x + y
map_plus(x, y) = map(plus, x, y)

a = rand(1000, 1000)
b = rand(1000, 1000)

# warming up and get map_plus compiled
a + b
map_plus(a, b)

# benchmark
@time for i in 1 : 10 map_plus(a, b) end # -- statement (1)
@time for i in 1 : 10 a + b end # -- statement (2)

Run this script in you computer, you will find that statement (1) is over 20+ times slower than statement (2). The
reason is that the function argument plus is resolved and called at each iteration of the inner loop within the map
function.

This package addresses this issue through type functors (i.e. function-like objects of specific types) and a set of highly
optimized higher level functions for mapping and reduction. The codes above can be rewritten as

using NumericExtensions

# benchmark
@time for i in 1 : 10 map(Add(), a, b) end # -- statement(1)
@time for i in 1 : 10 a + b end # -- statement(2)

Here, using a typed functor Add statement (1) is 10% faster than statement (2) in my benchmark.

5
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2.2 Functor types

Functor is the abstract base type for all functors, which are formally defined as below

abstract Functor{N} # N: the number of arguments

typealias UnaryFunctor Functor{1}
typealias BinaryFunctor Functor{2}
typealias TernaryFunctor Functor{3}

Below is an example that shows how to define a functor that computes the squared difference:

type SqrDiff <: BinaryFunctor end

NumericExtensions.evaluate(::SqrDiff, x, y) = abs2(x - y)
NumericExtensions.result_type(::SqrDiff, t1::Type, t2::Type) = promote_type(t1, t2)

To define multiple functors, it would be more concise to first import evaluate and result_type before extending
them, as follows:

import NumericExtensions.evaluate, NumericExtensions.result_type

type SqrDiff <: BinaryFunctor end

evaluate(::SqrDiff, x, y) = abs2(x - y)
result_type(::SqrDiff, t1::Type, t2::Type) = promote_type(t1, t2)

Note: Higher order functions such as map and reduce rely on the result_type method to determine the element
type of the result. This is necessary, as Julia does not provide a generic mechanism to acquire the return type of a
method.

2.3 Pre-defined functors

NumericExtensions.jl has defined a series of functors as listed below:

• Arithmetic functors: Add, Subtract, Multiply, Divide, Negate, Abs

• Max and Min functors: Max, Min

• Rounding functors: Floor, Ceil, Round, Trunc

• Power functors: Pow, Sqrt, Cbrt, Abs2, Hypot

• Exp and log functors: Exp, Exp2, Exp10, Log, Log2, Log10, Expm1, Log1p

• Trigonometric functors: Sin, Cos, Tan, Asin, Acos, Atan, Atan2

• Hyperbolic functors: Sinh, Cosh, Tanh, Asinh, Acosh, Atanh

• Error functors: Erf, Erfc

• Gamma functors: Gamma, Lgamma, Digamma

• Comparison functors: Greater, GreaterEqual, Less, LessEqual, Equal, NotEqual

• Number class functors: Isfinite, Isinf, Isnan

• Fused multiply and add: FMA (i.e. (a, b, c) -> a + b * c)

• Others: Logit, Logistic, Xlogx, Xlogy

6 Chapter 2. Functors
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Except for several functors that corresponding to operators, most functors are named using the capitalized version of
the corresponding math function. Therefore, you don’t have to look up this list to find the names. The collection of
pre-defined functors will be extended in future. Please refer to src/functors.jl for the most updated list.

2.3. Pre-defined functors 7
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CHAPTER 3

Mapping

NumericExtensions.jl extends map and map! to accept functors for efficient element-wise mapping:

3.1 General usage

Synopsis:

Let f1, f2, and f3 be respectively unary, binary, and ternary functors. Generic usage of map and map! is summarized
as follows:

map(f1, x)
map(f2, x1, x2)
map(f3, x1, x2, x3)

map!(f1, dst, x)
map!(f2, dst, x1, x2)
map!(f3, dst, x1, x2, x3)

Here, map creates and returns the resultant array, while map! writes results to a pre-allocated dst and returns it.
Each argument can be either an array or a scalar number. At least one argument should be an array, and all array
arguments should have compatible sizes.

Examples:

map(Abs(), x) # returns abs(x)
map(FMA(), x, y, z) # returns x + y .* z
map!(Add(), dst, x, 2) # writes x + 2 to dst

3.2 Additional functions

NumericExtensions.jl provides additional functions (map1!, mapdiff, and mapdiff!) to simplify common use:

Synopsis

map1! updates the first argument inplace with the results, mapdiff maps a functor to the difference between two
arguments, and mapdiff! writes the results of mapdiff to a pre-allocated array.

map1!(f1, x1) # x1 <-- f1(x1)
map1!(f2, x1, x2) # x1 <-- f2(x1, x2)
map1!(f3, x1, x2, x3) # x1 <-- f3(x1, x2, x3)

9
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mapdiff(f1, x, y) # returns f1(x - y)
mapdiff!(f1, dst, x, y) # dst <-- f1(x - y)

Here, x1 (i.e. the first argument to map1! must be an array, while x2 and x3 can be either an array or a number).

Note that mapdiff and mapdiff! uses an efficient implementation, which completes the computation in one-pass
and never creates the intermediate array x - y.

Examples

map1!(Mul(), x, 2) # multiply x by 2 (inplace)
mapdiff(Abs2(), x, y) # compute squared differences between x and y
mapdiff(Abs(), x, 1) # compute |x - 1|

3.3 Pre-defined mapping functions

Julia already provides vectorized function for most math computations. In this package, we additionally define several
functions for vectorized inplace computation (based on map!), as follows

add!(x, y) # x <- x + y
subtract!(x, y) # x <- x - y
multiply!(x, y) # x <- x .* y
divide!(x, y) # x <- x ./ y
negate!(x) # x <- -x
pow!(x, y) # x <- x .^ y

abs!(x) # x <- abs(x)
abs2!(x) # x <- abs2(x)
rcp!(x) # x <- 1 ./ x
sqrt!(x) # x <- sqrt(x)
exp!(x) # x <- exp(x)
log!(x) # x <- log(x)

floor!(x) # x <- floor(x)
ceil!(x) # x <- ceil(x)
round!(x) # x <- round(x)
trunc!(x) # x <- trunc(x)

In the codes above, x must be an array (i.e. an instance of AbstractArray), while y can be either an array or a
scalar.

In addition, this package also define some useful functions using compound functos:

absdiff(x, y) # abs(x - y)
sqrdiff(x, y) # abs2(x - y)
fma(x, y, c) # x + y .* c, where c can be array or scalar
fma!(x, y, c) # x <- x + y .* c

3.4 Performance

For simple functions, such as x + y or exp(x), the performance of the map version such as map(Add(), x,
y) and map(Exp(), x) is comparable to the Julia counter part. However, map can accelerate computation consid-
erably in a variety of cases:

10 Chapter 3. Mapping
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• When the result storage has been allocated (e.g. in iterative updating algorithms) or you want inplace update,
then map! or the pre-defined inplace computation function can be used to avoid unnecessary memory alloca-
tion/garbage collection, which can sometimes be the performance killer.

• When the inner copy contains two or multiple steps, map and map! can complete the computation in one-pass
without creating intermediate arrays, usually resulting in about 2x or even more speed up. Benchmark shows
that absdiff(x, y) and sqrdiff(x, y) are about 2.2x faster than abs(x - y) and abs2(x - y).

• The script test/benchmark_map.jl runs a series of benchmarks to compare the performance map and
the Julia vectorized expressions for a variety of computation.

3.4. Performance 11
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CHAPTER 4

Vector Broadcasting

Julia has very nice and performant functions for broadcasting: broadcast and broadcast!, which however does
not work with functors. For customized computation, you have to pass in function argument, which would lead to
severe performance degradation. NumericExtensions.jl provides vbroadcast and vbroadcast! to address this
issue.

Synopsis

vbroadcast(f, x, y, dim) # apply a vector y to vectors of x along a specific dimension
vbroadcast!(f, dst, x, y, dim) # write results to dst
vbroadcast1!(f, x, y) # update x with the results

Here, f is a binary functor, and x and y are arrays such that length(y) == size(x, dim).

Examples

vbroadcast(f, x, y, 1) # r[:,i] = f(x[:,i], y) for each i
vbroadcast(f, x, y, 2) # r[i,:] = f(x[i,:], y) for each i
vbroadcast(f, x, y, 3) # r[i,j,:] = f(x[i,j,:], y) for each i, j

vbroadcast1!(Add(), x, y, 1) # x[:,i] += y[:,i] for each i
vbroadcast1!(Mul(), x, y, 2) # x[i,:] .*= y[i,:] for each i

For cubes, it supports computation along two dimensions

x = rand(2, 3, 4)
y = rand(2, 3)

vbroadcast(x, y, (1, 2)) # this adds y to each page of x

Difference from broadcast

Unlike broadcast, you have to specify the vector dimension for vbroadcast. The benefit is two-fold: (1) the
overhead of figuring out broadcasting shape information is elimintated; (2) the shape of y can be flexible.

x = rand(5, 6)
y = rand(6)

vbroadcast(Add(), x, y, 2) # this adds y to each row of x
broadcast(+, x, reshape(y, 1, 6)) # with broadcast, you have to first reshape y into a row

13
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CHAPTER 5

Reduction

A key advantage of this package are highly optimized reduction and map-reduction functions, which sometimes lead
to over 10x speed up.

5.1 Full reduction

Synopsis

This package extends reduce and mapreduce, and additionally provides mapdiff_reduce for generic reduc-
tion and map-reduction.

Let f1, f2, and f3 be respectively unary, binary, and ternary functors, and op be an binary functor. The general
usage of these extended methods is summarized below:

reduce(op, x) # reduction using op to combine values

mapreduce(f1, op, x) # reduction using op to combine terms as f1(x)
mapreduce(f2, op, x1, x2) # reduction using op to combine terms as f2(x1, x2)
mapreduce(f3, op, x1, x2, x3) # reduction using op to combine terms as f3(x1, x2, x3)

mapdiff_reduce(f2, op, x, y) # reduction using op to combine terms as f2(x - y)

Examples

mapreduce(Abs2(), Add(), x) # compute the sum of squared of x (i.e. sum(abs2(x)))
mapreduce(Multiply(), Add(), x, y) # compute the dot product between x, y
mapdiff_reduce(Abs2(), Max(), x, y) # compute the maximum squared difference between x and y

5.2 Reduction along dimensions

The extended reduce and mapreduce and the additional mapdiff_reduce also allow reduction along specific
dimension(s):

Synopsis

reduce(op, x, dims)

mapreduce(f1, op, x, dims)
mapreduce(f2, op, x1, x2, dims)
mapreduce(f3, op, x1, x2, x3, dims)

15
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mapdiff_reduce(f2, op, x, y, dims)

Here, dims can be either an integer to specify arbitrary dimension, or a pair of integers such as (1, 2) for reduction
along two dimensions.

When dims is a pair of integers such as (1, 2) or (2, 3), each argument must be either a cube or a scalar. We
believe this has covered most usage in practice. That being said, we will try to support cases where dims can be an
arbitrary tuple in the future.

The package additionally provides reduce!, mapreduce!, and mapdiff_reduce!, which allow to write the
results of reduction/map-reduction along dimensions to pre-allocated arrays:

reduce!(dst, op, x, dims)

mapreduce!(dst, f1, op, x1)
mapreduce!(dst, f2, op, x1, x2, dims)
mapreduce!(dst, f3, op, x1, x2, x3, dims)

mapdiff_reduce!(dst, f2, op, x, y, dims)

Examples

reduce(Add(), x, 1) # sum x along columns
reduce(Add(), x, 2) # sum x along rows

reduce(Add(), x, (1, 2)) # sum each page of x
reduce(Add(), x, (1, 3)) # sum along both the first and the third dimension

mapreduce(Abs(), Max(), x, 1) # compute maximum absolute value along each column
mapreduce(Sqr(), Add(), x, 2) # compute sum square along each row

mapdiff_reduce(Abs(), Min(), x, y, (1, 2)) # compute minimum absolute difference
# between x and y for each page

5.3 Basic reduction functions

The package extends/specializes sum, mean, max, and min, and additionally provides sum!, mean!, max!, and
min!, as follows

The funtion sum and its variant forms:

sum(x)
sum(f1, x) # compute sum of f1(x)
sum(f2, x1, x2) # compute sum of f2(x1, x2)
sum(f3, x1, x2, x3) # compute sum of f3(x1, x2, x3)

sum(x, dims)
sum(f1, x, dims)
sum(f2, x1, x2, dims)
sum(f3, x1, x2, x3, dims)

sum!(dst, x, dims) # write results to dst
sum!(dst, f1, x1, dims)
sum!(dst, f2, x1, x2, dims)
sum!(dst, f3, x1, x2, x3, dims)

sumfdiff(f2, x, y) # compute sum of f2(x - y)

16 Chapter 5. Reduction
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sumfdiff(f2, x, y, dims)
sumfdiff!(dst, f2, x, y, dims)

The funtion mean and its variant forms:

mean(x)
mean(f1, x) # compute mean of f1(x)
mean(f2, x1, x2) # compute mean of f2(x1, x2)
mean(f3, x1, x2, x3) # compute mean of f3(x1, x2, x3)

mean(x, dims)
mean(f1, x, dims)
mean(f2, x1, x2, dims)
mean(f3, x1, x2, x3, dims)

mean!(dst, x, dims) # write results to dst
mean!(dst, f1, x1, dims)
mean!(dst, f2, x1, x2, dims)
mean!(dst, f3, x1, x2, x3, dims)

meanfdiff(f2, x, y) # compute mean of f2(x - y)
meanfdiff(f2, x, y, dims)
meanfdiff!(dst, f2, x, y, dims)

The function max and its variants:

max(x)
max(f1, x) # compute maximum of f1(x)
max(f2, x1, x2) # compute maximum of f2(x1, x2)
max(f3, x1, x2, x3) # compute maximum of f3(x1, x2, x3)

max(x, (), dims)
max(f1, x, dims)
max(f2, x1, x2, dims)
max(f3, x1, x2, x3, dims)

max!(dst, x, dims) # write results to dst
max!(dst, f1, x1, dims)
max!(dst, f2, x1, x2, dims)
max!(dst, f3, x1, x2, x3, dims)

maxfdiff(f2, x, y) # compute maximum of f2(x - y)
maxfdiff(f2, x, y, dims)
maxfdiff!(dst, f2, x, y, dims)

The function min and its variants

min(x)
min(f1, x) # compute minimum of f1(x)
min(f2, x1, x2) # compute minimum of f2(x1, x2)
min(f3, x1, x2, x3) # compute minimum of f3(x1, x2, x3)

min(x, (), dims)
min(f1, x, dims)
min(f2, x1, x2, dims)
min(f3, x1, x2, x3, dims)

min!(dst, x, dims) # write results to dst
min!(dst, f1, x1, dims)

5.3. Basic reduction functions 17
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min!(dst, f2, x1, x2, dims)
min!(dst, f3, x1, x2, x3, dims)

minfdiff(f2, x, y) # compute minimum of f2(x - y)
minfdiff(f2, x, y, dims)
minfdiff!(dst, f2, x, y, dims)

Note: when computing maximum/minimum along specific dimension, we use max(x, (), dims) and min(x,
(), dims) instead of max(x, dims) and min(x, dims) to avoid ambiguities that would otherwise occur.

5.4 Derived reduction functions

In addition to these basic reduction functions, we also define a set of derived reduction functions, as follows:

var(x)
var(x, dim)
var!(dst, x, dim)

std(x)
std(x, dim)
std!(dst, x, dim)

sumabs(x) # == sum(abs(x))
sumabs(x, dims)
sumabs!(dst, x, dims)

meanabs(x) # == mean(abs(x))
meanabs(x, dims)
meanabs!(dst, x, dims)

maxabs(x) # == max(abs(x))
maxabs(x, dims)
maxabs!(dst, x, dims)

minabs(x) # == min(abs(x))
minabs(x, dims)
minabs!(dst, x, dims)

sumsq(x) # == sum(abs2(x))
sumsq(x, dims)
sumsq!(dst, x, dims)

meansq(x) # == mean(abs2(x))
meansq(x, dims)
meansq!(dst, x, dims)

dot(x, y) # == sum(x .* y)
dot(x, y, dims)
dot!(dst, x, y, dims)

sumabsdiff(x, y) # == sum(abs(x - y))
sumabsdiff(x, y, dims)
sumabsdiff!(dst, x, y, dims)

meanabsdiff(x, y) # == mean(abs(x - y))
meanabsdiff(x, y, dims)

18 Chapter 5. Reduction
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meanabsdiff!(dst, x, y, dims)

maxabsdiff(x, y) # == max(abs(x - y))
maxabsdiff(x, y, dims)
maxabsdiff!(dst, x, y, dims)

minabsdiff(x, y) # == min(abs(x - y))
minabsdiff(x, y, dims)
minabsdiff!(dst, x, y, dims)

sumsqdiff(x, y) # == sum(abs2(x - y))
sumsqdiff(x, y, dims)
sumsqdiff!(dst, x, y, dims)

meansqdiff(x, y) # == mean(abs2(x - y))
meansqdiff(x, y, dims)
meansqdiff!(dst, x, y, dims)

Although this is quite a large set of functions, the actual code is quite concise, as most of such functions are generated
through macros (see src/reduce.jl)

In addition to the common reduction functions, this package also provides a set of statistics functions that are particu-
larly useful in probabilistic or information theoretical computation, as follows

sumxlogx(x) # == sum(xlogx(x)) with xlog(x) = x > 0 ? x * log(x) : 0
sumxlogx(x, dims)
sumxlogx!(dst, x, dims)

sumxlogy(x, y) # == sum(xlog(x,y)) with xlogy(x,y) = x > 0 ? x * log(y) : 0
sumxlogy(x, y, dims)
sumxlogy!(dst, x, y, dims)

entropy(x) # == - sumxlogx(x)
entropy(x, dims)
entropy!(dst, x, dims)

logsumexp(x) # == log(sum(exp(x)))
logsumexp(x, dim)
logsumexp!(dst, x, dim)

softmax!(dst, x) # dst[i] = exp(x[i]) / sum(exp(x))
softmax(x)
softmax!(dst, x, dim)
softmax(x, dim)

For logsumexp and softmax, special care is taken to ensure numerical stability for large x values, that is, their
values will be properly shifted during computation.
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5.5 Weighted Sum

Computation of weighted sum as below is common in practice.

𝑛∑︁
𝑖=1

𝑤𝑖𝑥𝑖

𝑛∑︁
𝑖=1

𝑤𝑖𝑓(𝑥𝑖, . . .)

𝑛∑︁
𝑖=1

𝑤𝑖𝑓(𝑥𝑖 − 𝑦𝑖)

NumericExtensions.jl directly supports such computation via wsum and wsumfdiff:

wsum(w, x) # weighted sum of x with weights w
wsum(w, f1, x1) # weighted sum of f1(x1) with weights w
wsum(w, f2, x1, x2) # weighted sum of f2(x1, x2) with weights w
wsum(w, f3, x1, x2, x3) # weighted sum of f3(x1, x2, x3) with weights w
wsumfdiff(w, f2, x, y) # weighted sum of f2(x - y) with weights w

These functions also support computing the weighted sums along a specific dimension:

wsum(w, x, dim)
wsum!(dst, w, x, dim)

wsum(w, f1, x1, dim)
wsum!(dst, w, f1, x1, dim)

wsum(w, f2, x1, x2, dim)
wsum!(dst, w, f2, x1, x2, dim)

wsum(w, f3, x1, x2, x3, dim)
wsum!(dst, w, f3, x1, x2, x3, dim)

wsumfdiff(w, f2, x, y, dim)
wsumfdiff!(dst, w, f2, x, y, dim)

Furthermore, wsumabs, wsumabsdiff, wsumsq, wsumsqdiff are provided to compute weighted sum of abso-
lute values / squares to simplify common use:

wsumabs(w, x) # weighted sum of abs(x)
wsumabs(w, x, dim)
wsumabs!(dst, w, x, dim)

wsumabsdiff(w, x, y) # weighted sum of abs(x - y)
wsumabsdiff(w, x, y, dim)
wsumabsdiff!(dst, w, x, y, dim)

wsumsq(w, x) # weighted sum of abs2(x)
wsumsq(w, x, dim)
wsumsq!(dst, w, x, dim)

wsumsqdiff(w, x, y) # weighted sum of abs2(x - y)
wsumsqdiff(w, x, y, dim)
wsumsqdiff!(dst, w, x, y, dim)
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5.6 Performance

The reduction and map-reduction functions are carefully optimized. In particular, several tricks lead to performance
improvement:

• computation is performed in a cache-friendly manner;

• computation completes in a single pass without creating intermediate arrays;

• kernels are inlined via the use of typed functors;

• inner loops use linear indexing (with pre-computed offset);

• opportunities of using BLAS are exploited.

Generally, many of the reduction functions in this package can achieve 3x - 10x speed up as compared to the typical
Julia expression.

We observe further speed up for certain functions: * full reduction with sumabs, sumsq, and dot utilize BLAS
level 1 routines, and they achieve 10x to 30x speed up. * For var and std, we devise dedicated procedures, where
computational steps are very carefully scheduled such that most computation is conducted in a single pass. This results
in about 25x speedup.
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CHAPTER 6

Vector Norms and Normalization

This package provides functions for evaluating vector norms and normalizing vectors.

6.1 Vector Norm Evaluation

Synopsis

vnorm(x, p) # compute L-p norm of vec(x)
vnorm(x, p, dim) # compute L-p norm of x along dimension dim
vnorm!(r, x, p, dim) # compute L-p norm along specific dimension and

# write results to r

vnormdiff(x, y, p) # compute L-p norm of vec(x - y)
vnormdiff(x, y, p, dim) # compute L-p norm of x - y along dim
vnormdiff!(r, x, y, p, dim) # compute L-p norm of x - y along dim and write to r

Notes:

• For vnormdiff and vnormdiff!, x or y can be either an array or a scalar.

• When p is 1, 2, or Inf, specialized fast routines are used.

Examples

vnorm(x, 2) # compute L-2 norm of x
vnorm(x, 2, 1) # compute L-2 norm of each column of x
vnorm(x, Inf, 2) # compute L-inf norm of each row of x
vnorm!(r, x, 2, 1) # compute L-2 norm of each column, and write results to r

vnormdiff(x, 2.5, 2) # compute L-2 norm of x - 2.5
vnormdiff(x, y, 1, 2) # compute L-1 norm of x - y for each column

6.2 Normalization

Normalizing a vector w.r.t L-p norm means to scale a vector such that the L-p norm of the vector becomes 1.

Synopsis

normalize(x, p) # returns a normalized vector w.r.t. L-p norm
normalize!(x, p) # normalize x w.r.t. L-p norm inplace
normalize!(r, x, p) # write the normalized vector to a pre-allocated array r
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normalize(x, p, dim) # returns an array comprised of normalized vectors along dim
normalize!(x, p, dim) # normalize vectors of x along dim inplace w.r.t. L-p norm
normalize!(r, x, p, dim) # write the normalized vectors along dim to r
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CHAPTER 7

Array Scanning

Scanning refers to the operation that applies a binary function recursively as follows:

Let x be an input vector and f be a binary operator, then the output y is a vector of the same length given by

𝑦[1] = 𝑥[1]

𝑦[𝑖] = 𝑓(𝑦[𝑖− 1], 𝑥[𝑖]),∀𝑖 = 2, 3, . . .

For example, the function cumsum is a special case of array scanning.

This package provides both generic scanning functions, such as scan, scan!, mapscan, and mapscan!, as well
as specialized scanning functions, such as cumsum and cumsum!, etc.

7.1 Generic Scanning

Synopsis

Let op be a binary operator, f1, f2, and f3 be respectively unary, binary, and ternary functors.

scan(op, x) # scan x using operator op
mapscan(op, f1, x) # scan f1(x)
mapscan(op, f2, x, y) # scan f2(x, y)
mapscan(op, f3, x, y, z) # scan f3(x, y, z)

scan!(r, op, x) # write the results of scanning of x to r
mapscan!(r, op, f1, x)
mapscan!(r, op, f2, x, y)
mapscan!(r, op, f3, x, y, z)

scan!(op, x) # inplace scanning of x using operator op

Both scan and scan! accepts a dimension argument for scanning vectors along a specific dimension.

scan(op, x, dim) # scan vectors of x along dim using operator op
mapscan(op, f1, x, dim) # scan vectors of f1(x) along dim
mapscan(op, f2, x, y, dim) # scan vectors of f2(x, y) along dim
mapscan(op, f3, x, y, z, dim) # scan vectors of f3(x, y, z) along dim

scan!(r, op, x, dim) # write the results of scanning of x to r
mapscan!(r, op, f1, x, dim)
mapscan!(r, op, f2, x, y, dim)
mapscan!(r, op, f3, x, y, z, dim)
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scan!(op, x, dim) # inplace scanning of x along dim

Note: mapscan and mapscan! use efficient ways to scan the terms without creating a temporary array such as
f1(x). Hence, mapscan(op, f1, x) is generally faster than scan(op, f(x)).

Examples

scan(Add(), x) # equivalent to cumsum(x)
scan(Add(), x, 1) # equivalent to cumsum(x, 1)
scan!(Add(), x) # writing cumsum(x) inplace (i.e. back to x)

7.2 Common Scanning Functions

For some common scanning operations, we provide specific functions to simplify the use.

# cumsum uses Add() as scanning operator

cumsum(x)
cumsum!(r, x)
cumsum!(x)

cumsum(f1, x)
cumsum(f2, x, y)
cumsum(f3, x, y, z)

cumsum!(r, f1, x)
cumsum!(r, f2, x, y)
cumsum!(r, f3, x, y, z)

# cummax uses Max() as scanning operator

cummax(x)
cummax!(r, x)
cummax!(x)

cummax(f1, x)
cummax(f2, x, y)
cummax(f3, x, y, z)

cummax!(r, f1, x)
cummax!(r, f2, x, y)
cummax!(r, f3, x, y, z)

# cummin uses Min() as scanning operator

cummin(x)
cummin!(r, x)
cummin!(x)

cummin(f1, x)
cummin(f2, x, y)
cummin(f3, x, y, z)

cummin!(r, f1, x)
cummin!(r, f2, x, y)
cummin!(r, f3, x, y, z)
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CHAPTER 8

Fast Shared-memory Views

Getting a slice/part of an array is common in numerical computation. Julia itself provides two ways to do this:
reference (e.g. x[:, J]) and the sub function (e.g. sub(x, :, J)). Both have performance issues: the former
makes a copy each time you call it, while the latter results in an SubArray instance. Despite that sub does not create
a copy, accessing elements of a SubArray instance is usually very slow (with current implementation).

NumericExtensions.jl addresses this problem by providing a unsafe_view function, which returns a view of specific
part of an array. Below is a list of valid usage:

unsafe_view(a)

unsafe_view(a, :)
unsafe_view(a, i0:i1)

unsafe_view(a, :, :)
unsafe_view(a, :, j)
unsafe_view(a, i0:i1, j)
unsafe_view(a, :, j0:j1)

unsafe_view(a, :, j, k)
unsafe_view(a, i0:i1, j, k)
unsafe_view(a, :, :, k)
unsafe_view(a, :, j0:j1, k)

unsafe_view(a, :, :, :)
unsafe_view(a, :, :, k0:k1)

Benchmark shows that using unsafe_view often increases the throughput of element accessing by 50%.

Notes

• unsafe_view only applies to the case when the part being referenced is contiguous.

• unsafe_view only does not maintain reference to the source array (instead, it relies on pointers) and does not
perform bounds checking. Please use it with caution. Preferrably, it should be used within a context where you
can ensure that the source array is existent and the indices are correct.
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CHAPTER 9

Utilities for Data Manipulation

This package provides some useful functions for data manipulation:

eachrepeat(x, rt)
Repeats each element in x for rt times. Three cases are supported:

•x is a vector, and rt is an integer

•x is a vector, and rt is a vector of the same size

•x is a matrix, and rt is a pair as (p, q)

Examples:

eachrepeat(1:3, 2) # ==> [1,1,2,2,3,3]
eachrepeat([1,4,5],[2,3,1]) #==> [1,1,4,4,4,5]

eachrepeat([1 2 3; 4 5 6], (3, 2))
#==> [1 1 2 2 3 3;
# 1 1 2 2 3 3;
# 1 1 2 2 3 3;
# 4 4 5 5 6 6;
# 4 4 5 5 6 6;
# 4 4 5 5 6 6]

sortindexes(x[, k ])
This is similar to sortperm. But it only applies to a sequence of elements, whose values are in 1:k. This
function implements an algorithm of complexity O(n), which is faster than sortperm.

This function returns a pair of two outputs:

•sinds: the sorted indexes, i.e. sortperm(x).

•cnts: the counts of occurrences of each value in 1:k, i.e. cnts[i] == sum(x .== i).

Examples:

x = [1, 1, 1, 2, 2, 3, 3, 3, 3, 1, 1, 2, 1]
s, c = sortindexes(x, k)
# s == sortperm(x) == [1, 2, 3, 10, 11, 13, 4, 5, 12, 6, 7, 8, 9]
# c == [6, 3, 4]

Node: The second argument k may be omitted, in such cases, it is equivalent to sortindexes(x,
max(x)).

sortindexes!(x, sinds, cnts)
Perform same functionality as sortindexes, but write the results to pre-allocated arrays.
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groupindexes(x[, k ])
Group indexes according to the integers in x, which can take values in 1:k. This function returns a vector of
index vectors (say r), such that r[i] == find(x .== i).

This function relies on sortindexes internally, and its complexity is O(n).

Examples:

julia> x = [1, 1, 1, 2, 2, 3, 3, 3, 3, 1, 1, 2, 1];
julia> groupindexes(x)
3-element Array{Array{Int64,1},1}:
[1,2,3,10,11,13]
[4,5,12]
[6,7,8,9]

Node: The second argument k may be omitted, in such cases, it is equivalent to groupindexes(x,
max(x)).
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CHAPTER 10

Positive Definite Matrices

Positive definite matrices are widely used in machine learning and probabilistic modeling, especially in applications
related to graph analysis and Gaussian models. It is not uncommon that positive definite matrices used in practice have
special structures (e.g. diagonal), which can be exploited to accelerate computation.

NumericExtensions.jl supports efficient computation on positive definite matrices of various structures. In particular, it
provides uniform interfaces to use positive definite matrices of various structures for writing generic algorithms, while
ensuring that the most efficient implementation is used in actual computation.

10.1 Positive definite matrix types

This package defines an abstract type AbstractPDMat to capture positive definite matrices of various structures, as
well as three concrete sub-types: PDMat, PDiagMat, ScalMat, which can be constructed as follows

• PDMat: representing a normal positive definite matrix in its full matrix form. Construction: PDMat(C).

• PDiagMat: representing a positive diagonal matrix. Construction: PDiagMat(v), where v is the vector of
diagonal elements.

• ScalMat(d, v): representing a scaling matrix of the form v * eye(d). Construction: ScalMat(d,
v), where d is the matrix dimension (the size of the matrix is d x d), and v is a scalar value.

Notes: Compact representation is used internally. For example, an instance of PDiagMat only contains a vector of
diagonal elements instead of the full diagonal matrix, and ScalMat only contains a scalar value. While, for PDMat,
a Cholesky factorization is computed and contained in the instance for efficient computation.

10.2 Common interface

Functions are defined to operate on positive definite matrices through a uniform interface. In the description below,
We let a be a positive definite matrix, i.e an instance of a subtype of AbstractPDMat, x be a column vector or a
matrix, and c be a positive scalar.

dim(a)
Return the dimension of the matrix. If it is a d x d matrix, this returns d.

full(a)
Return a copy of the matrix in full form.

logdet(a)
Return the log-determinant of the matrix.
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diag(a)
Return a vector of diangonal elements.

a * x
Perform matrix-vector/matrix-matrix multiplication.

a \ x
Solve linear equation, equivalent to inv(a) * x, but implemented in a more efficient way.

a * c, c * a
Scalar product, multiply a with a scalar c.

unwhiten(a, x)
Unwhitening transform.

If x satisfies the standard Gaussian distribution, then unwhiten(a, x) has a distribution of covariance a.

whiten(a, x)
Whitening transform.

If x satisfies a distributiion of covariance a, then the covariance of whiten(a, x) is the identity matrix.

Note: whiten and unwhiten are mutually inverse operations.

unwhiten!(a, x)
Inplace unwhitening, x will be updated.

whiten!(a, x)
Inplace whitening, x will be updated.

quad(a, x)
Compute x’ * a * x in an efficient way. Here, x can be a vector or a matrix.

If x is a vector, it returns a scalar value. If x is a matrix, is performs column-wise computation and returns a
vector r, such that r[i] is x[:,i]’ * a * x[:,i].

invquad(a, x)
Compute x’ * inv(a) * x in an efficient way (without computing inv(a)). Here, x can be a vector or a
matrix (for column-wise computation).

quad!(r, a, x)
Inplace column-wise computation of quad on a matrix x.

invquad!(r, a, x)
Inplace column-wise computation of invquad on a matrix x.

X_A_Xt(a, x)
Computes x * a * x’ for matrix x.

Xt_A_X(a, x)
Computes x’ * a * x for matrix x.

X_invA_Xt(a, x)
Computes x * inv(a) * x’ for matrix x.

Xt_invA_X(a, x)
Computes x’ * inv(a) * x for matrix x.

a1 + a2
Add two positive definite matrices (promoted to a proper type).

a + x
Add a positive definite matrix and an ordinary square matrix (returns an ordinary matrix).
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add!(x, a)
Add the positive definite matrix a to an ordinary matrix m (inplace).

add_scal!(x, a, c)
Add a * c to an ordinary matrix x (inplace).

add_scal(a1, a2, c)
Return a1 + a2 * c (promoted to a proper type).

Note: Specialized version of each of these functions are implemented for each specific postive matrix types using the
most efficient routine (depending on the corresponding structures.)
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